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Abstract

In this paper, multi-storey buildings with narrow rectangular plane con®guration (narrow buildings) are treated as

cantilever ¯exural-shear plates in analysis of free vibration. The governing di�erential equations for free vibration of
¯exural-shear plates with variably distributed mass and sti�ness are established and reduced to Bessel's equations or
Euler's equation by selecting suitable expressions, such as power functions and exponential functions, for the

distributions of sti�ness and mass along the height of the plates. The general solutions of ¯exural-shear plates are
derived. Numerical examples demonstrate that the calculated natural frequencies and mode shapes of narrow
buildings are in good agreement with the experimentally measured data. It is also shown that it is possible to regard
a building with rigid ¯oors as a cantilever ¯exural bar that is a special case of a cantilever ¯exural-shear plate. Thus,

the methods proposed in this paper are suitable for the calculation of free vibration of narrow buildings and
common shear-wall buildings. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The full-scale measurements of free vibration of buildings (e.g., Wang, 1978; Li et al., 1994; Jeary,

1997) have shown that the ¯exural deformation is dominant in the total deformation of multi-storey

buildings with shear-wall structures in their horizontal vibrations. Li et al. (1996) suggested that for

certain cases these shear-wall buildings can be simpli®ed as cantilever ¯exural bars for the analysis of

their free vibrations. An approach to determine the natural frequencies and mode shapes of cantilever

¯exural bars with variably distributed mass and sti�ness was proposed by Li (1995). However, if a

building has a narrow rectangular plane con®guration, B/L < 1/4, where B and L are the width and
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length of the rectangular plane, respectively, the sti�ness of each ¯oor of the building cannot be treated
as in®nitely rigid. Then, this building may not be simpli®ed as a cantilever bar for free vibration
analysis. It is reasonable to consider such a building as a cantilever plate. The ®eld measurements
conducted by Ishizaki and Katakeyana (1960), Wang (1978), Li et al. (1994) and Jeary (1997) revealed
that for multi-storey buildings with a narrow rectangular plane con®guration (narrow building), shear
deformation is dominant in the total deformation in their horizontal vibrations for certain cases. They
reported that not only the parallel motions between ¯oors occurred, but also the relative motions
between parallel frames were observed. Thus, when analysing free vibration of narrow buildings, it is
possible to regard such structures as cantilever shear plates with variably distributed mass and sti�ness
(Wang, 1978). However, a narrow building with shear-wall structures may not be simpli®ed as a
cantilever shear plate. This is due to the fact that it has been found (e.g., Li et al., 1994; Jeary, 1997)
that the ¯exural deformation of shear-walls is dominant in the total deformation in the horizontal
vibrations of such a narrow building. Hence, it is more resonable to treat a narrow building with shear-
wall structures as a cantilever ¯exural-shear plate with variably distributed mass and sti�ness.

In fact, there are very few equations of vibrating plates with variable cross-section where exact
solutions can be obtained. These exact plate solutions are available only for certain plate shapes and
boundary conditions (e.g., Timoshenko and Woinowsky-Krieger, 1959). Chopra (1974) developed an
analytical approach for the free vibration of a simply supported plate with one change in thickness. Guo
et al. (1997) recently found the analytical solutions for the free vibration of a stepped, simply supported
plate with uniform thickness and abrupt thickness changes. Wang (1978) derived the closed form
solutions for the free vibration of cantilever shear plates with uniformly distributed mass and sti�ness.
However, it is obvious that the distributions of mass and shear sti�ness of most narrow buildings are
actually not uniform, especially, along the building height. In general, the variation of mass and sti�ness
along the longitudinal axis of a narrow building (the x-axis in Fig. 1a) can be neglected. Thus, it is
reasonably assumed that the narrow buildings considered in this paper have uniformly distributed mass
and sti�ness along the longitudinal axis, but variably distributed mass and sti�ness along the height of
the narrow buildings. Free vibration analysis of a cantilever ¯exural-shear plate with variably distributed

Fig. 1a. A one-step ¯exural-shear plate.
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mass and sti�ness has received relatively little attention in the past. The exact solution of this problem
has not previously been proposed in the literature. In this paper, the distributions of mass and sti�ness
along the height of the plates are described by selecting suitable functions, such as power functions and
exponential functions. The exact solutions of ¯exural-shear plates with variably distributed mass and
sti�ness are derived. The numerical examples show that the calculated dynamic characteristics of two
tall buildings are in good agreement with the measured ®eld data. It is shown through the numerical
examples that the selected expressions are suitable for describing the distributions of mass and sti�ness
of typical multi-storey buildings.

In this paper, an attempt is made to present exact analytical solutions to free vibrations of cantilever
¯exural-shear plates with variably distributed mass and sti�ness. In the absence of exact solutions, this
problem can be solved using approximated methods (e.g., the Ritz method) or numerical methods (e.g.,
the ®nite element method and the ®nite strip method). However, the present exact solutions can provide
adequate insight into the physics of the problem and can be easily implemented. The availability of the
exact solutions will help in examining the accuracy of the approximate or numerical solutions.
Therefore, it is always desirable to obtain the exact solutions to such problems.

2. The governing di�erential equation

A narrow building is simpli®ed as a cantilever ¯exural-shear plate as shown in Fig. 1a. Its
deformation in the lateral direction is ¯exural, but the deformation in the longitudinal direction (the x-
axis in Fig. 1a) is shear. It is assumed that this plate is subjected to a transversal dynamic load,
q�x, y, t�. In order to establish the governing di�erential equation of vibration of this plate, an
in®nitesimal element of the plate is taken, as shown in Fig. 1b. The size of the element is dx � dy. The
dynamic loading acting on the element is q�x, y, t� dx dy. The inertial force is �ÿ �mxy�@2w=@ t2� dx dy�,
where w is the dynamic displacement of the plate in the z-axis at the point (x, y ). The damping force is
�ÿCxy�@w=@ t� dx dy�. Fig. 1b shows the element that is rotated through an angle of 908. Considering the
equilibrium conditions for all the forces acting on the element (Fig. 1b), using d' Alembert's principle,
leads to:

Fig. 1b. An element of the plate.
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��
Qy � @Qy

@y
dy

�
ÿQy

�
dx�

��
Qx � @Qx

@x
dx

�
ÿQx

�
dy� q�x, y, t� dx dy

ÿ Cxy
@w

@t
dx dyÿ �mxy

@ 2w

@t2
dx dy � 0

�1�

Thus,

@Qx

@x
� @Qy

@y
ÿ Cxy

@w

@t
ÿ �mxy

@2w

@ t2
� ÿq�x, y, t� �2�

in which �mxy and Cxy are the mass intensity (mass per unit area) and viscous damping coe�cient at the
point (x, y ), respectively.

Because the deformation in the x-axis is shear and that in the y-axis is ¯exural, we have,

Qy � @My

@y
� ÿ @

@y

 
Ky
@2w

@y2

!
Qx � Kx

@w

@x
�3�

where Kx and Ky are the transverse shear sti�ness in the x-axis and transverse ¯exural sti�ness in the y-
axis, respectively. My is the bending moment about the x-axis.

Substituting eqn (3) into eqn (2) leads to

@

@y

�
Kx
@w

@x

�
ÿ @2

@y2

 
Ky
@2w

@y2

!
ÿ Cxy

@w

@t
ÿ �mxy

@2w

@ t2
� ÿq�x, y, t� �4�

This is the governing di�erential equation for vibration of a ¯exural-shear plate with variably
distributed mass and sti�ness along the height of the plate. Setting q�x, y, t� � 0 gives the governing
di�erential equation for free vibration of the ¯exural-shear plate as follows

@

@y

�
Kx
@w

@x

�
ÿ @2

@y2

 
Ky
@2w

@y2

!
ÿ Cxy

@w

@t
ÿ �mxy

@2w

@ t2
� 0 �5�

In general, the damping force is not considered for free vibration analysis, so,

@

@y

�
Kx
@w

@x

�
ÿ @2

@y2

 
Ky
@2w

@y2

!
ÿ �mxy

@2w

@t2
� 0 �6�

In order to determine natural frequencies and mode shapes, it is assumed that

w�x, y, t� � Z�x, y� sin �o t� g0� �7�

where Z�x, y� is the vibration mode function, o is the circular natural frequency, g0 is the initial phase.
Substituting eqn (7) into eqn (6) gives

@

@x

�
Kx
@Z

@x

�
ÿ @2

@y2

 
Ky
@2Z

@y2

!
� �mxyo2Z � 0 �8�

In order to simplify the calculation and get the analytical solutions, it is assumed that Ky is a function
of y, Kx and �mxy are also functions of y.
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Ky � K1f�y�, Kx � K2j�y�, �mxy � �mj�y� �9�

i.e., it is assumed that Kx is directly proportional to �mxy since the values of Kx and �mxy are mainly
dependent on the size and materials of building ¯oors. In fact, the mass and sti�ness distribution of
each ¯oor is usually approximately uniform along the x-axis, thus, this assumption is reasonable for
most narrow buildings.

Using the method of separation of variables gives

Z�x, y� � X�x�Y�y� �10�

Substituting eqns (9) and (10) into eqn (8) leads to

K2

d2X

dx2

X
� �mo2 �

d2

dy2

"
K1f�y�d

2Y

dy2

#
Yj�y� �11�

The left-hand-side of the above equation is a function of y and the right-hand-side is a function of x.
Thus, both sides should be equal to a constant. It is assumed that the constant is �my2 then, two
ordinary di�erential equations are obtained from eqn (11) as follows

K2
d2X

dx2
� �mO2X � 0 �12�

d2

dy2

"
K1f�y�d

2Y

dy2

#
ÿ �mj�y�y2Y � 0 �13�

where

O2 � o2 ÿ y2 o �
����������������
O2 � y2

p
�14�

The boundary conditions of the cantilever ¯exural-shear plate (Fig. 1a) are as

x � 0, Qx � 0, i:e:,
dX

dx

����
x�0
� 0 �15�

x � L,
dX

dx

����
x�L
� 0 �16�

y � 0, Y�0�, dY

dy

����
y�0
� 0 �17�

y � H, My�H� � 0, Qy�H� � 0, i:e:,
d2Y

dy2

�����
x�H
� 0,

d

dy

 
Ky

d2Y

dy2

!������
x�H
� 0 �18�

It is obvious that eqns (12) and (13) are the governing di�erential equations of vibration mode shape of
a shear bar and a ¯exural bar, respectively. The boundary conditions of the shear bar are described by
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eqns (15) and (16). The boundary conditions of the ¯exural bar are represented by eqns (17) and (18).
The natural frequency of the plate is equal to the square root of the square sum of the two natural
frequencies of the two bars. The mode shape of the plate is the product of the corresponding two mode
shapes of the two bars.

3. The general solutions of free vibration of ¯exural-shear plates

As discussed above, free vibration analysis can be carried out by analysing two independent bars, i.e.,
by solving the two independent ordinary di�erential equations, eqns (12) and (13).

The general solution of eqn (12) is found as

X�x� � D1 sin
O
a2

x�D2 cos
O
a2

x �19�

where

a2 �
�������
K2

�m

r
�20�

Using the boundary conditions, eqns (15) and (16), gives

D1 � 0 �21�

sin
O
a2

L � 0 �22�

The k-th circular natural frequency and mode shape of the shear bar in the x-axis are as follows

Ok �
�kÿ 1�p

L

�������
K2

�m

r
�23�

Xk�x� � D2 cos
�kÿ 1�px

L
�24�

D2 can be taken as any value, for example, D2 � 1.
It is di�cult to ®nd the exact solution of eqn (13) for general cases, because the structural parameters

in the equation vary with co-ordinate y. It is obvious that the exact solution is dependent on the
distributions of mass and sti�ness. The exact solution of eqn (13) may be obtained by means of
reasonable selections for the mass and sti�ness distributions. As suggested by Wang (1978), Tuma and
Cheng, 1983 and Li et al. (1994, 1996, 1998), the functions that can be used to approximate the
variation of mass and sti�ness are algebraic polynomials, exponential functions, trigonometric series, or
their combinations. In this paper, four important cases are considered and discussed as follows.

Case 1:

K1�y� � K1 � constant �mxy � �m � constant �25�
It is obvious that Case 1 represents a uniform ¯exural-shear plate.

Substituting eqn (25) into eqn (13) gives
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d4Y

dy2
ÿ �k

4
Y � 0 �26�

where

�k �
������
y
a1

s
, a1 �

�������
K1

�m

r
�27�

The general solution of eqn (26) is found as,

Y�y� � C1e
�ky � C2eÿ

�ky � C3 sin �ky� C4 cos �ky �28�

Case 2:

K1�y� � K1�1� by�n�2 �29�

�mxy � �m �1� by�n �30�
eqn (13) can be rewritten as

Ky
d4Y

dy2
� 2

dKy

dy

d3Y

dy3
� d2Ky

dy2
d2Y

dy2
ÿ �mxyy

2Y � 0 �31�

Substituting eqns (29) and (30) into eqn (31) gives

�1� by�2 d4Y

dy2
� 2b�n� 2��1� by�d

3Y

dy3
� b2�n� 2��n� 1�d

2Y

dy2
ÿ �m

K1
y2Y � 0 �32�

A di�erential operator, D, is introduced herein

D � 1

�1� by�n
d

dy

�
�1� by�n�1 d

dy

�
�33�

Then, eqn (32) can be written as�
D� o

a1

��
Dÿ o

a1

�
Y � 0 �34�

where

a1 �
�������
K1

�m

r
�35�

i.e., eqn (34) can be divided into two di�erential equations�
D� o

a1

�
Y � 0 �36�

�
Dÿ o

a1

�
Y � 0 �37�
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Substituting eqn (33) into eqn (36) gives

d2Y

dy2
� b�n� 1�

1� by
dY

dy
� 1

1� by
o
a1

Y � 0 �38�

Setting

Y �
�
x
l

�ÿn
C �39�

x � l�1� by�1=2 �40�

l2 � 4y

a1b
2

�41�

and substituting eqns (39)±(41) into eqn (38) gives

d2C

dx2
� 1

x
dC
dx
�
 
1ÿ n2

x2

!
C � 0 �42�

This is Bessel's equation of n-order. Its general solution can be expressed as

C�x� � C1Jn�x� � C2Yn�x� �43�
Substituting eqn (43) into eqn (39) gives

Y�y� � �1� by�ÿn=2�C1Jn�x� � C2Yn�x�
� �44�

Similarly, the general solution of eqn (37) is given by

Y�y� � �1� by�ÿn=2�C1In�x� � C2Kn�x�
� �45�

The sum of eqns (44) and (45) is the general solution of mode shape in the y-axis.

Y�y� � �1� by�ÿn=2�C1In�x� � C2Yn�x� � C3In�x� � C4Kn�x�
� �46�

where Jn, Yn, In, Kn are Bessel functions of the ®rst, second, third and fourth kind, respectively.
In order to simplify the calculation, four fundamental functions are introduced herein to express Y(y)

as

Y�y� � A1Y1�y� � A2Y2�y� � A3Y3�y� � A4Y4�y� �47�

The four fundamental functions meet the following conditions:

when y � 0, Y1 � 1,
dY1�y�

dy
� 0 �48�

Y2 � 0,
dY2�y�

dy
� 1 �49�
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Y3 � 0,
dY3�y�

dy
� 0 �50�

Y4 � 0,
dY4�y�

dy
� 0 �51�

It should be pointed out that the higher derivative of Y3( y ) is di�erent from that of Y4( y ). The
procedure of determining the four fundamental functions is as follows:

1. The fundamental functions are expressed in the linear combination of the four special solutions as
follows

2664
Y1

Y2

Y3

Y4

3775 �
2664
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

3775

2666666666666664

�
x
l

�ÿn
Jn�x��

x
l

�ÿn
Yn�x��

x
l

�ÿn
In�x��

x
l

�ÿn
Kn�x�

3777777777777775
�52�

2. Determining the constants aij �i, j � 1, 2, 3, 4� and the fundamental functions.

The constants aij �i, j � 1, 2, 3, 4� and the fundamental functions can be determined based on the
following equations:2666664

�
x
l

�ÿn
Jn�x�

�
x
l

�ÿn
Yn�x�

d

dy

"�
x
l

�ÿn
Jn�x�

#
d

dy

"�
x
l

�ÿn
Yn�x�

#
3777775
�
a11
a12

�
�

264 1

2

0

375 �53�

2666664
�
x
l

�ÿn
In�x�

�
x
l

�ÿn
Kn�x�

d

dy

"�
x
l

�ÿn
In�x�

#
d

dy

"�
x
l

�ÿn
Kn�x�

#
3777775
�
a13
a14

�
�

264 1

2

0

375 �54�

2666664
�
x
l

�ÿn
Jn�x�

�
x
l

�ÿn
Yn�x�

d

dy

"�
x
l

�ÿn
Jn�x�

#
d

dy

"�
x
l

�ÿn
Yn�x�

#
3777775
�
a21
a22

�
�
24 0

1

2

35 �55�
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2666664
�
x
l

�ÿn
In�x�

�
x
l

�ÿn
Kn�x�

d

dy

"�
x
l

�ÿn
In�x�

#
d

dy

"�
x
l

�ÿn
Kn�x�

#
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�
a23
a24

�
�
24 0

1

2

35 �56�

2666664
�
x
l

�ÿn
Jn�x�

�
x
l

�ÿn
Yn�x�

d

dy

"�
x
l

�ÿn
Jn�x�

#
d

dy

"�
x
l

�ÿn
Yn�x�

#
3777775
�
a31
a32

�
�
24 0

1

2

35 �57�

2666664
�
x
l

�ÿn
In�x�

�
x
l

�ÿn
Kn�x�

d

dy

"�
x
l

�ÿn
In�x�

#
d

dy

"�
x
l

�ÿn
Kn�x�

#
3777775
�
a33
a34

�
�
24 0

ÿ1
2

35 �58�

2666664
�
x
l

�ÿn
Jn�x�

�
x
l

�ÿn
Yn�x�

d

dy

"�
x
l

�ÿn
Jn�x�

#
d

dy

"�
x
l

�ÿn
Yn�x�

#
3777775
�
a41
a42

�
�

264 1

2

0

375 �59�

2666664
�
x
l

�ÿn
In�x�

�
x
l

�ÿn
Kn�x�

d

dy

"�
x
l

�ÿn
In�x�

#
d
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"�
x
l

�ÿn
Kn�x�

#
3777775
�
a43
a44

�
�

264ÿ12
0

375 �60�

Solving eqns (53)±(60) obtains aij �i, j � 1, 2, 3, 4�, then, substituting aij into eqn (52) gives the four
fundamental functions as follows

Y1 � pl
4

�
x
l

�ÿn�
ÿ Yn�1�l�Jn�x� � Yn�x�Jn�1�l� � 2

p

�
Kn�1�l�In�x� � Kn�x�In�1�l�

�� �61�

Y2 � p
2b

�
x
l

�ÿn�
ÿ Yn�l�Jn�x� � Yn�x�Jn�l� � 2

p

�
Kn�l�In�x� ÿ Kn�x�In�l�

��
�62�

Y3 � p
2b

�
x
l

�ÿn�
ÿ Yn�l�Jn�x� � Yn�x�Jn�l� ÿ 2

p

�
Kn�l�In�x� ÿ Kn�x�In�l�

��
�63�
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Y4 � pl
4

�
x
l

�ÿn�
ÿ Yn�1�l�Jn�x� � Yn�x�Jn�1�l� ÿ 2

p

�
Kn�1�l�In�x� � Kn�x�In�1�l�

�� �64�

Case 3:

K1�y� � K1�1� by�n�4 �65�

�mxy � �m �1� by�n �66�
Substituting eqns (65) and (66) into eqn (31) gives

x4
d4Y

dx4
� 2�n� 4�x3 dKy

dy

d3Y

dy3
� �n� 4��n� 3�x2 d2Y

dx2
ÿ o4

d � 0 �67�

where

x � 1� by, o 4
d �

o2

a21b
4

�68�

eqn (67) is Euler's equation.
Letting

x � exp�Z� �69�
Substituting eqn (69) into eqn (67) gives�

D�Dÿ 1��Dÿ 2��Dÿ 3� � 2�n� 4�D�Dÿ 1��Dÿ 2� � �n� 4��n� 3�D�Dÿ 1� ÿ o4
d

�
Y � 0 �70�

where

D � d

dZ
�71�

eqn (70) can be simpli®ed to

�D4 � 2�n� 1�D3 �
ÿ
n2 � nÿ 1

�
D2 ÿ �n� 1��n� 2�Dÿ o4

d �Y � 0 �72�
Now we identify DiY � ri and then eqn (72) can be expressed as

r4 � 2�n� 1�r3 �
ÿ
n2 � nÿ 1

�
r2 ÿ �n� 1��n� 2�rÿ o4

d � 0 �73�
The above equation can be rewritten as�

r2 � �n� 1�r� n� 2

2

�2
ÿo4

d �
�
n� 2

2

�2

� 0 �74�

Solving this equation for r gives

r1,2 � ÿ1
2

264n� 12

�����������������������������������������������������
n2 � 3ÿ

�������������������������������
n� 2

2

�2

�o4
d

svuut
375 �75�
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r3,4 � ÿ1
2

264n� 12

�����������������������������������������������������
n2 ÿ 3ÿ

�������������������������������
n� 2

2

�2

�o4
d

svuut
375 �76�

It is easily found that r1 and r2 are real roots. If r3 and r4 are also real roots, then the general solution
of eqn (31) is given by

Y � C1 exp �r1Z� � C2 exp �r2Z� � C3 exp �r3Z� � C4 exp �r4Z� �77�
If r3 and r4 are complex numbers, then

Y � C1 exp �r1Z� � C2 exp �r2Z� � exp

�
ÿ n� 1

2
Z

�
�C3 cos eZ� C4 sin eZ� �78�

in which

e �

������������������������������������������������������������������������������������
n� 2

2

�2

�o4
d

s
ÿ n2 � 3

vuut �79�

Case 4:

K1�y� � K1 exp� ÿ by� �80�

�mxy � �m exp� ÿ by� �81�
Substituting eqns (80) and (81) into eqn (31) leads to a di�erential equation with constant coe�cients as
follows

K1
d4Y

dy4
ÿ 2K1b

d3Y

dy3
� K1b

2 d2Y

dy2
ÿ �mo2Y � 0 �82�

We identify �d3Y=dy3� � r3, �d2Y=dy2� � r2, �dY=dy� � r and then eqn (82) can be expressed as

�r�rÿ b� � o2
e ��r�rÿ b� ÿ o2

e � � 0 �83�
where

o4
e �

o2

a21
�84�

The roots of eqn (83) are found as

r1,2 � b2

4
2

�����������������
b2

4
� o2

e

s
�85�

r3,4 � b

2
2

�����������������
b2

4
� o2

e

s
�86�

It is obvious that r1,2 are real roots and r3,4 are complex roots if o2
e > �b2=4�: Thus, the general solution
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of eqn (31) can be expressed as

Y � exp

�
by

2

�24
C1 exp

0@ ��������������������
b2

4
� o2

ey

s 1A� C2 exp

0@ÿ
��������������������
b2

4
ÿ o2

ey

s 1A� C3 sin

0@ ��������������������
o2

e �
b2

4
y

s 1A

� C4 cos

0@ÿ
��������������������
o2

e ÿ
b2

4
y

s 1A35
�87�

The general solutions of the above four cases can be expressed in a uni®ed formula in terms of the four
special solutions as follows

Y�y� � C1W1�y� � C2W2�y� � C3W3�y� � C4W4�y� �88�
in which Wj�y� �j � 1, 2, 3, 4� can be found from eqn (28) for Case 1, from eqns (61)±(64) for Case 2,
from eqn (77) or eqn (78) for Case 3, from eqn (87) for Case 4, respectively. Cj �j � 1, 2, 3, 4� are
constants, which can be determined according to the boundary conditions.

The natural frequencies and mode shapes of cantilever ¯exural-shear plate can be found in terms of
the following procedures:

1. The relationship of parameters at the top and those at the base can be expressed as�
Y�H� dY�H�

dy
0 0

�T

� �T��0 0 My�0� Qy�0��T �89�

in which

�T� � �W�H���W�0��ÿ1 �90�
�
W�y�� �266666666666664

W1�y� W2�y� W3�y� W4�y�
dW1�y�

dy

dW2�y�
dy

dW3�y�
dy

dW4�y�
dy

Ky

d2W1�y�
dy2

Ky

d2W2�y�
dy2

Ky

d2W3�y�
dy2

Ky

d2W4�y�
dy2

ÿ d

dy

"
Ky

d2W1�y�
dy2

#
ÿ d

dy

"
Ky

d2W2�y�
dy2

#
ÿ d

dy

"
Ky

d2W3�y�
dy2

#
ÿ d

dy

"
Ky

d2W4�y�
dy2

#

377777777777775
�91�

2. Determination of frequency equation

Using eqn (89) obtains�
T33 T34

T43 T44

��
My�0�
Qy�0�

�
� 0 �92�

in which Tij is the element of [T ].
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Because My�0� 6� 0, Qy�0� 6� 0, the frequency equation is

T33T44 ÿ T34T43 � 0 �93�
Solving eqn (93) obtains yj �j � 1, 2, . . .� The jk-th circular natural frequency can be determined from
eqn (14).

3. Determination of mode shapes

Substituting yj into eqn (92) and setting Qyj�0� � 1 (or any value) obtain Myj�0�:

4. Determination of the integral constants Cij �i � 1, 2, 3, 4�2664
C1j

C2j

C3j

C4j

3775 � �W�0��ÿ1
2664

0
0

Myj�0�
Qyj�0�

3775 �94�

Substituting the calculated Cij into eqn (88) gives the j-th mode shape in the y-axis, Yj�y�. The jk-th
mode shape can be determined by using eqn (10).

4. Numerical example 1

A residence building that is located in Beijing, China, has 15 storeys with shear-wall structures as
shown in Fig. 3. The distribution of shear-wall along the longitudinal direction of the building is
uniform and the cross-sectional dimensions of the shear-walls are the same. The foundation of the
building can be treated as ®rm. Thus, the building is simpli®ed as a uniform cantilever ¯exural-shear
plate for free vibration analysis. The procedure for determining the natural frequencies and mode shape
of the building is as follows:

1. Determination of mass intensity per unit area of the ¯exural-shear plate

Fig. 2. A multi-step ¯exural-shear plate.
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The mass distribution is uniform and its intensity per unit area is found as follows

�m � M

HL
� 7,413,120 kg

46:80 m� 72:00 m
� 2200 kg=m2

where M, H and L are the total mass, the height and the length of the building, respectively (see Fig. 3).

2. Determination of the ¯exural sti�ness, K1

The total moment of inertia of shear-walls is

Fig. 3. A narrow building.
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I � 1:15� 102 m4

The Young's modulus is

E � 2:55� 1010 N=m2

The total ¯exural sti�ness of shear-walls is

EI � 2:93� 1012 N �m2

The ¯exural sti�ness, K1, of the plate is the value of EI divided by the length of the plate (i.e., the
length of the building),

K1 � EI

L
� 2:93� 1012

72
� 4:07� 1010 N �m

3. Determination of the shear sti�ness, K2, in the x-axis

The shear sti�ness, K2, in the x-axis is the sti�ness of each ¯oor, GF, divided by the storey height,
which is found as

K2 � 11:43� 108 N=m

4. Determination of natural frequencies and mode shapes

The k-th circular natural frequency can be found from eqn (23) as

Ok �
�k� 1�p

L

�������
K2

�m

r
� 31:45�kÿ 1�

Letting k = 1, 2, 3, obtains O1 � 0, O2 � 31:45, O3 � 62:90.
yj can be determined from the eigenvalue equation, eqn (93), which is given by

ch �kH � cos �kH� 1 � 0

It is found that y1 � 6:90, y2 � 43:27, y3 � 120:97

The circular natural frequencies, o jk, can be determined from eqn (14) and the calculated values of
o jk are listed in Table 1. It is necessary to point out that o jk is corresponding to the j-th mode shape in
the y-axis and the k-th mode shape in the x-axis.

It is obvious that yj � o jk if K2 is in®nity, i.e., the sti�ness of each ¯oor can be treated as in®nitely
rigid in-plane of the ¯oor. In this case, the vibration modes corresponding to Ok �k > 2� may not appear
in the vibration of this building. Thus, these types of buildings can be simpli®ed as a ¯exural bar for
vibration analysis.

The mode shapes, Yj �y� �j � 1, 2, 3� in the y-axis and Xk�x�, �k � 1, 2, 3� in the x-axis are calculated

Table 1

The circular natural frequencies of the narrow building

o 11 o 12 o 21 o 13 o 22 o 23 o 31 o 32 o 33

6.90 32.20 43.27 53.49 63.28 76.05 120.97 124.99 136.35
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and shown in Figs. 4 and 5, respectively. The mode shape, Y1( y ) experimentally measured from an
ambient vibration survey by Li et al. (1994) are also presented in Fig. 4 for comparison purposes. The
measured value of o11 is 6.97. It is clear that the calculated results are in good agreement with the
experimental data. This illustrates that the proposed methods in this paper are applicable to engineering
application.

The mode shape function, Zjk�x, y�, of this building can be found as

Zjk�x, y� � Yj�y�Xk�x�
Fig. 6 shows the obtained mode shapes, Z11�x, y�, Z22�x, y�, Z33�x, y�.

5. Numerical example 2

The main structure of the Guangzhou Hotel Building is a R. C. shear-wall structure with 24 stories.
There is a three-storey appendage that is built on the top of the main structure. Based on the full-scale
measurement of free vibration of this building (Li et al., 1996), the building can be treated as a
cantilever ¯exural-shear plate with variable cross-section in free vibration analysis and the e�ect of
rotatory inertia and transverse shear deformation can be neglected. The procedure for determining the
dynamic characteristics of this tall building is as follows:

Fig. 4. The ®rst three mode shapes in the y-direction. Note: the solid lines represent the calculated mode shapes and the cross sym-

bols are the measured results by Li et al. (1994).
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1. Determination of the mass per unit area of the plate (Fig. 7)

The mass per unit area of the ¯exural-shear plate, which represents the Guangzhou Hotel Building, varies
in echelon along the building height (Fig. 7). It can be seen in Fig. 7 that the variation of the mass per unit
area is comparatively small, thus, it is reasonable to assume �m as a constant, i.e. �m � 3761 kg/m2.

2. Evaluation of the ¯exural sti�ness, K1�y� and the shear sti�ness, K2.

The ¯exural sti�ness, K1�y�, varies in echelon along the height of the building (Fig. 8). For simpli®cation,
the distributions of ¯exural sti�ness, K1�y�, is described by a power function of y as follows

K1�y� � K1�1� by�2 �95�

According to the following information of this building provided by Li et al. (1994):

at y � 0, K1�y� � 5:50� 1011 N �m
at y � H, K1�y� � 2:80� 1011 N �m

The constants K1 and b are determined as

Fig. 5. The ®rst three mode shapes in the x-direction.
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Fig. 7. Mass ( �m ) distribution of the Guangzhou Hotel Building.

Fig. 6. The mode shapes of the building.
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K1 � 5:50� 1011 N �m
b � ÿ 3:796� 10ÿ3

The evaluated distribution of sti�ness [by eqn (95)] is shown in Fig. 8 (dotted line and the values in
parentheses).

The shear sti�ness in the x-axis, K2 is found as

K2 � GF

h
� 2:135� 109

where GF is the shear sti�ness of ¯oor and h is the storey height.

3. Evaluation of the fundamental natural frequency

As mentioned above, the frequency equation is eqn (93). But, it is more convenient to establish the
frequency equation by use of eqn (47). Because the fundamental functions Yi�y� �i � 1, 2, 3, 4� meet eqns
(48)±(51), it is easy to determine the integral constants Ai �i � 1, 2, 3, 4�. According to the boundary
conditions, eqn (17) and using eqn (47) (n = 0, for this case), we have

at y � 0, Y�0� � 0; gives A1 � 0

at y � 0,
dY

dy
� 0, gives A2 � 0

Then, using the boundary condition, eqn (18), obtains the frequency equations as follows

Y 003 �H�Y 0004 �H� � Y 004 �H�Y 0003 �H� �96�

Fig. 8. Sti�ness (K1�y�) distribution of the Guangzhou Hotel Building. Note: the dotted lines and values in parentheses are the eval-

uated distributions.
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where

Y 003 �H� � B1

�
J0�l�Y2

�l �H � ÿ Y0�l�J2�l �H � � 2

p

�
I0�l�K2

�l �H � ÿ K0�l�I2�l �H �
��

�97�

Y 0003 �H� � B2

�
J0�l�Y3

�l �H � ÿ Y0�l�J3�l �H � � 2

p

�
I0�l�K3

�l �H � ÿ K0�l�I3�l �H �
��

�98�

Y 004 �H� � B3

�
J1�l�Y2�l �H � ÿ Y1�l�J2�l �H � � 2

p

�
I1�l�K2�l �H � ÿ K1�l�I2�l �H �

��
�99�

Y 0004 �H� � B4

�
J1�l�Y3

�l �H � ÿ Y1�l�J3�l �H � � 2

p

�
I1�l�K3

�l �H � ÿ K1�l�I3�l �H �
��

�100�

B1 � pl2b
8

�H
ÿ2

B2 � pl3b2

16 �H
�H
ÿ2

B3 � pl3b2

16
�H
ÿ2

B4 � pl4b2

32 �H
�H
ÿ2

�H � �1� bH�1=2

9>>>>>>>=>>>>>>>;
�101�

It can be assumed that B1 � B2 � B3 � B4 � 1 for solving the frequency equation. It is found that y1 �
6:85 rad/s.

Ok can be determined from eqn (23). O1 is found as: O1 � 0.
From eqn (14), it is obvious that o11 � y1 � 6:858 rad/s. The measured value of o 11 by Li et al.

(1996) is 6.478 rad/s. The computed fundamental natural frequency of this building approaches the
measured data, suggesting that the methods proposed herein are applicable to engineering application
and practice.

4. Calculation of vibration mode shape

After computing y1, the ®rst mode shape in the y-axis, Y1�y�, can be determined by

Y�y� � A3Y3 � A4Y4 �102�

If we set A3 � 1, then

Table 2

The fundamental mode shape of the building in the y-axis

Storey level 1 2 5 8 11 14 17 20 24

y/H 0 0.0704 0.2007 0.3230 0.4454 0.5678 0.6976 0.8125 1

Y1(y/H) measured 0 0.005 0.070 0.160 0.290 0.390 0.540 0.730 1

Y1(y/H) calculated 0 0.0068 0.0527 0.1414 0.2644 0.4049 0.5599 0.7336 1
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A4 � ÿY
00
3
�H�

Y 004 �H�
�103�

The calculated results are listed in Table 2. The corresponding measured data by Li et al. (1996) are
also presented in Table 2 for the purposes of comparison. It can be seen from Table 2 that the
calculated fundamental mode shape in the y-axis show good agreement with the measured mode shape.

The ®rst mode shape in the x-axis, X1�x�, can be determined by use of eqn (24) as: X1�x� � C. C can
be taken as any value, for example, C = 1.

Using the aforementioned procedure, the higher natural frequencies and corresponding mode shapes
of this tall building can also be determined.

6. Conclusions

In fact, there are very few equations of vibrating plates with varying cross-section where exact
solutions can be obtained. In this paper, an e�cient approach to determine the natural frequencies and
mode shapes of cantilever ¯exural-shear plates with variably distributed mass and sti�ness has been
proposed. The exact solutions for free vibration of cantilever ¯exural-shear plates are derived by
selecting suitable expressions, such as power functions and exponential functions, for the distributions of
sti�ness and mass along the height of the plates.

The numerical examples demonstrate that the calculated natural frequencies and mode shapes of two
narrow buildings are in good agreement with the corresponding full-scale measurements. It is shown
through the numerical examples that the selected expressions are suitable for describing the distributions
of mass and sti�ness of typical multi-storey buildings. It was found that if the sti�ness of each ¯oor of a
narrow building can be treated as in®nitely rigid, then, the mode shapes of a ¯exural-shear plate which
represents the narrow building are the same as those of a ¯exural bar which is a special case of a
¯exural-shear plate. Thus, the methods proposed in this paper are suitable for the calculation of free
vibration of narrow buildings and common shear-wall buildings.
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